Steven A. Gabriel
The George Washington University

David Bernstein
Princeton University

April 1999

Giae

New Jersey TIDE Center
Directed by Prof. Louis J. Pignataro
New Jersey Institute of Technology
Newark, NJ
pignataro@admin.njit.edu
www.njtide.org

1 Introduction

The problem of finding the shortest path in a network arises frequently in trans-
portation applications. When building descriptive behavioral models one fre-
guently assumes that the people choose the shortest, fastest, or cheapest path.
When building prescriptive systems (e.g., in-vehicle navigation systems) one al-
most always wants to provide a user with the “best” path to her/his destination. It
is not surprising, therefore, that researchers have devoted a considerable amount
of time and effort to studying this problem.

Interestingly, most of the research on shortest path problems, particularly as
they relate to transportation applications, has assumed that the “cost” on a path
is the sum of the “costs” on the arcs in that path. Unfortunately, however, this is
often not the case. A particularly important example arises when people consider
more than one attribute (e.g., travel time and tolls) and one of the attributes is
valued nonlinearly (e.g., time). This situation can arise both in descriptive models
(e.g., trying to predict the impact of a new toll policy) and in prescriptive systems
(e.g., providing guidance when there are tolled and untolled alternatives).

In this paper we consider a shortest path problem in which the costs are a par-
ticular nonlinear, nonseparable function. We consider a specific functional form
which converts arc travel times to costs via a certain “value” function (usually
assumed convex) and also adds arc tolls. Recently, Bernstein and Scott [4] have
developed an algorithm to solve this form of the problem and have reported good
results. In this paper, we present an algorithm offdaesible-directions variety
in which subproblems are simple minimum cost flow linear programs. The algo-
rithm contains a heuristic component to ensure that a path which produces a lower
function value is found. Based on our series of tests, the results are very favor-
able. Indeed, the heuristic component was never needed for convergence of the
method. In addition, the total number of iterations needed (where each iteration
corresponds to solving a transportation linear programming problem) was very
low— typically only two or three iterations were needed—for a variety of starting
points, functions, and networks considered.

The problem considered in this paper is closely related to the multicriteria
path problem discussed in [6], [12], and elsewhere. Indeed, it appears [11] that the
polynomial time approximation schemes that have been used to solve the multicri-
teria problem (see, for example, [14]). Here, however, we are not concerned with
identifying the entire efficient frontier and, hence, approach the problem some-
what differently.

2 Problem Formulation

We consider a network composed of artgaind nodesV” with cardinalities|.A| =

n and|N'| = m. We distinguish two nodes,, andn, as the origin and destination
nodes of this network. In addition, there is a function R’} — R, which
associates a cost with the vector of arc flaws R .

2.1 The Nonadditive Shortest Path Problem

The shortest path problem we examine can be stated as the following nonlinear,
binary program:

min ¢(z)
st. Ax =0 1)
z € {0,1}"

whereA is them x n node-arc incidence matrix, that is:

—1 ifarcj is directed into node (2)

1 ifarcj is directed out of node
al] =
0 otherwise

andb € R™ is defined as:

1 1=n,
bi: -1 i:nd (3)

0 otherwise

It is not hard to see that the feasible &’ = {x : Az = b,z € {0,1}"} defines
paths from the origin to the destination. We also introduce the following related
problem as a relaxation of (1):

min ¢(x)
st. Ar=0b (4)
0<z<1

with corresponding feasible regidii = {z : Az = 0,0 < 2 < 1} and vertex
setV (F'). The first (well-known) result concerns the relationship between the two
feasible regiong/” and F.

Lemma 1 Consider the nonadditive shortest path problem described by (1) and
(4). If we assume that

(i) the origin and destination are connected by a directed path from the origin
to the destination, and

(i) ¢(x) is continuous,
then,
() problems (1) and (4) always have solutions, and
(b) the vertices of the feasible region to (4) correspond to paths in the network.

Proof. The feasible regions to both problems are closed and bounded hence
compact. They are also nonempty by assumption (i). By assumption (ii), and the
Weierstrass Theorem we see that both problems have a solution. Part (b) follows
from Theorems 1,2 and 3 in [9].QED

2.2 A Class of Nonadditive Cost Functions

It is often assumed in shortest path problems, that the path costs are additive (i.e.,
they are simply the sum of the individual arcs costs for the arcs on the path). By
contrast, we consider path cost functiarthat are nonadditive (i.e., the costs are
not simply the sum of the relevant arc costs). As discussed above, such problems
often arise as subproblems in nonlinear, competitive multi-agent network models.
In its most general form, this formulation is less mathematically tractable than
the additive model. However, we consider a particular variant of the nonlinear
formulation as described below. Specifically, we consider the case in which:

c(z) =v(t'z)+ 7l (5)

wheret ¢ R, denotes one component of the overall cost (which we will refer to
as the vector of times);, € Rl denotes another component of the overall cost
(which we will refer to as the vector of tolls), and: R, — R, is a translation
function that converts time units (e.g., minutes) to toll units (e.g., dollars).

This functional form is easy to motivate if one considers the specific case
of time-cost and money-cost. To do so, one need only assume that users have
a nonlinear value of time. Is this reasonable? Consider the following thought
experiment. Would you rather have 30 one-minute “blocks” of time or 1 thirty-
minute “block” of time? If you do not place the same dollar value on these two
options then you have a nonlinear value of time.

With this cost function the relaxed problem of interest to us becomes:

3

min o(t'z) + 'z
st. Az =0 (6)
0<z<1

A basic result concerning the cost functie) is now described.

Lemma 2 If the translation functioru(-) is convex, then the path cost function
c(x) in (5) is convex.

2.3 Motivating the Heuristic

As discussed by [4], there is a problem that is closely related to (6) that can be
very useful when trying to solve (1). Specifically, let denote a solution to (4)
and consider the problem:

min ZZ T;T;

st. Ar=b
th — tT.T* (7)
0<z<1

The following (obvious) result summarizes the important relationships between
(6) and (7).

Lemma 3 Let z* be a solution to (6) and let be a solution to (7). Them* is
also a solution to (7) and is also a solution to (6).

Proof. If x solves (7), themz = b,0 < & < 1 so thatz is feasible to (6). Also,
v(tTz) + 71Tz =o(tTa*)+71x
<wv(tlz*) + 1z
so thatz solves (6).
Now we show that every solutiari to (6) solves (7) as well. We have

v(tTx*) + 77" < min{v(t'z) + 772 Az =050 <z <1}
<min{v(tTz) + 772 : Az =b,0 <2z < 1,tTe = tT2*}
=o(tTz*) + min{rTz: Az =b,0 <2z < 1,tTe = tT2*}
=o(t'z)+ 7'z

so thatz* solves (7). QED

Table 1: Times and Tolls for the Sample Network

Arct t; T

<.

COUhWNER
PR R R
o

The heuristic that we describe in the next section is motivated by an obser-
vation that we made after solving several instances of (6). Specifically we found
that in many instances the solution set of (6) corresponds to a a path or a path with
just one cycle. Indeed, the heuristic that follows seems to perform well in practice
because this casual observation often holds true. However, it is relatively easy to
see that this obseravtion is not true in general.

Figure 1: A Sample Network

To do so, consider the simple network shown in Figure 1 with times and tolls
as shown in Table 1. The corresponding node-arc incidence for this network is:

1 0 0 0 0

-1 0 1 0 0 0

A= 0o -1 -1 1 1 0
o 0 0 -1 0 1

o 0 0 0 -1 -1

and the cost function for this exampleds) = 10(t"'z)? + 77z.
Solving this problem yields:

12 = 0.249967
x13 = 0.750033
To3 = 0.249967
34 = 0.250033
45 = 0.250033

with an objective function value of37.5. Clearly, this solution does not corre-
spond to either a path or a path with one cycle. Also, the least expensive path is
140 and since arc costs are nondecreasing with flows, no path or path with one
cycle is better than this solution.

3 The Heuristic

In spite of the counterexample above, it turns out that in many cases one can solve
(1) by considering the vertices of the feasible region Of course, this means
that as long as one ends up with a vertex solution, the LP relaxation (6) can be
considered in place of the original formulation. While it is not generally true that
the minimum of a convex function will occur at an extreme point of the feasible
region, with proper care, a best vertex solution can be achieved. This is the idea
behind Algorithm 1 presented below.

In what follows, we make use of the following direction-finding subproblem
in which z is a fixed vector ang is the vector of arc flows to be solved for and
the functionc € C?:

min Ve(z)T(y — 7)
st. Ay=b (8)
0<y<l1
Note that since the feasible region is compact and the objective function is
linear, hence continuous, by the Weierstrass Theorem, this problem always has a
solution. In addition, we know that since this is a linear program, there is always
a vertex solution.

3.1 A Stopping Condition

We begin the discussion of the heuristic at the end. That is, we consider a stop-
ping condition that allows one to conclude that the original binary programming

6

problem has been solved.

Lemma 4 Suppose that
(i) the functionc(-) is convex and differentiable and
(i) the vectorz corresponds to a vertex df.

If y* is an optimal solution to (8) given, with Vc(z)” (y* — z) > 0, thenz solves

(1).

Proof. First note that sincg* is a solution (8), it corresponds to a path. Siace
is convex and differentiable, we know that for everin the domain ot

c(y) > c(x) + Ve(z) (y — x)

for all y. Using the optimality ofy* and the nonnegativity of the associated inner
product term, we have

c(y) —c(@) >Ve(@)'(y—-2),VyeF
> V(@) (y* — 1) ©)
> 0,

which implies thatc(y) > ¢(z) Vy € V(F) C F or thatz is a solution to (1).
QED

3.2 How to Choose the Next Iterate

Lemma 4 specifies a stopping condition that indicates when a path vector gen-
erated from the LP subproblem corresponds to a solution to the original inte-
ger program. Now we consider when the optimal objective function value to
(8) is not nonnegative as described in the lemma above. In this case we have,
Ve(z)T (y* — z) < 0 and the vectoy* provides a descent direction feand also
y* corresponds to a path. This latter fact follows from Lemma 1 siyicis an
optimal solution to the subproblem and must correspond to a vertex since (8) is an
LP.

To choose the next iterate, two cases need to be distinguished. First, if

c(y”) < c(2),

then we know that the new iteragé provides a lower function value thanand
corresponds to a path, thus we should takes the next iterate. (Evenifdid
not correspond to a vertex, takipg as the next iterate is useful for descent of the
method).

On the other hand, if

Ve(z)' (y* — 7) <0, andc(y*) > c(z),

then in spite of the fact that* — x was a descent direction, if we require descent
of the overall objective function, we cannot move to the veftex

3.2.1 Moving Off of a Vertex

Of course, in some cases we must move off of a vertex. One approach is to
backtrack and find the largest valges {p°, p=!, p=2, ...} such that

c(z + ply" — x)) < c(2)

wherep € (0,1). This ensures that the next iterates+ p(y* — =), has a lower
function value. Since* is a descent direction, such a steplength is guaranteed to
exist. The difficulty is that the next iterate + p(y* —), may not be a vertex. In-
deed, this is exactly the reason why general descent methods for convex programs
with network-type constraints will not necessarily work. (Note that in principle,
one could allow the algorithm to move away from a vertex solution early on to
generate sufficient descent of the objective function and then later, require that
only vertex solutions be used for iterates.)

3.2.2 Searching for a Better Path Solution to the Subproblem

If there is a path corresponding to the veajdor which¢(j) < ¢(z) then, assum-
ing thatc is convex, we would have

c() = e(x) = V()" (§ —).

Note that such a path might not have been calculated from the LP subproblem
because the quantityc(z)?(j —) might not have been optimal. That is, min-
imizing the directional derivative would have produced a direction that gave the
mostnegative inner product only, not one in which the new direction pointed to a
path (vertex) with a lower cost. In this case, one can perform a heuristic search,

8

via a sequence of linear programming subproblems to determine if such a yector
exists or if, in fact, there is no descent in the objective function relative to moving
to a new path. We discuss several heuristic procedures for this step shortly. First,
however, we describe the overall heuristic.

We denote the “best path’solution at a given iteration ag’*s!. “Best” in
this context means that, out of all those paths considered, this path has the lowest
objective function value. In the initialization step, we seleg’d’ € R" with
corresponding objective function arbitrarily large so that at iteration zero, the path
solution(y*)? will necessarily be a better path.

Algorithm 1: An Overall Heuristic

L bes .
Step 0 (Initialization) Select a vectat’, y"**' € R":.
Setk = 0.

Step 1 (Search Direction)

(a) Compute(y*)* as a solution to the LP (8) with = *.
(b) If C((y*)k) < C(yb“t), thenybest — (y*)k

Step 2 (Calculate Iterate)

@) If Ve(z%)T((y*)F — 2*) > 0, then STOP(y*)* is
an optimal solution to (1).

(b) Otherwise, ifc((y*)*) < c(z*) then setr**! = (y*)¥, k = k + 1 and
go to Step 1.

(c) Else, determine using a heuristic approach, if there exists a

vertexj such thate(g) < c(yes?). If yes, seteb™! =, k = k + 1,
y"st = ¢ and go to Step 1. If no, then sto@**! solves (1).

Clearly, if Step 2c can be satisfied for each relevant iteration, this method
produces a sequence of iterafad } that converge to a solution. The key is to
identify good heuristics for solving the Step 2c problems.

Lybest need not actually refer to a path.

4 Heuristic Approaches for Finding a Path with Lower
Cost

In Step 2 of the algorithm, we consider the case when the LP subproblem has
produced an optimal solutiafy*)* corresponding to a path for which:

V() ((y)" — %) <.
but
c((y)*) = e(z").

The following approaches are heuristic schemes to either find agpsukch that
c(9) < c(y*t) or to determine that no sughexists.

4.1 A Path-Finding Heuristic

In this scheme, if there is a paftsuch that
c(§) — e(y™) <0,
then, assuming thatis a convex function, this implies that
0> Vel) (5~).

Hence, we can make use of the following related linear program as part of the
search for a better path

min vc(ybest)T(y o ybest)
st. Ay=b (10)
0<y<l1

Sincey*! was a vertex which was computed previously (ignoring the initial
value), the optimal objective function of (10) must be negative. Since if it were
nonnegative, by Lemma 4, we would have concluded gt was in fact an
optimal solution to the original integer program. Denote/byan optimal solution
to (10). We wish to solve a modified form of (10) in which we attempt to generate
a g by forcing the LP to satisffe(y*)? (y — y****) > v wherev is a value in
the range Ve (y**)T (y* — ybet), 0). More specifically, if we denote the heuristic
inner iteration by, at theith iteration, we would solve the following LP:

10

min vc(ybest)T(y o ybest)
st. Ay=5b
O0<y<l1
Vc(ybest)T(y o ybest) Z v;

Note that this LP always has a solution since the feasible region is compact and
nonempty (since’**’ satisfies the constraints) and the objective function is con-
tinuous. Moreover, sincg®! is a feasible solution, the objective function is
bounded above by. Note that this approach has a similarity to the feasible di-
rections method of Zoutendijk (see, for example, [2]). The main difference being
that in our method, we solve a sequence of these LP subproblems to find a solution
that corresponds to a vertex (i.e., a path). This is not necessarilly the case in the
method of Zoutendijk.

If the constraint involvingy; is binding at an optimal solution, then the so-
lution may not refer to a vertex. However, we know from examining the KKT
optimality conditions, that if this constraint is not tight, then a vertex solution to
(11) corresponds to a vertex solution from (8).

In any event, even if this new constraint is binding, we can take the computed
solution and easily check to see if it relates to a path. It is worth noting that one
can also apply Lagrangian relaxation techniques (see, for example, [10, 16]) to
(11). Specifically, letting:

(11)

L()\) — min Vc(ybest)T(y o ybest) o)\(vc(ybest)T(y o ybest) o Vi)
st. Ay=1b (12)
0<y<l

one can maximizé. () in an attempt to solve (11). Alternatively, one can simply
select a large value of and hope to get lucky.
In what follows,y* is a solution to (8) used in the overall heuristic.

Algorithm 2: A Path-Finding Heuristic

Step O (Initialization) Select a value for, € (Ve(y®eH)” (y* — yb*!),0). Set
1 =0. Settol, > 0,0 > 0.

Step 1 (Termination Check for) If |v;| < tol, then noy exists.

Step 2 (Candiate Path Generation) Solve the LP (11) denoting a solutigyt gs
If (y*) does not relate to a path, then go to Step 3c.

11

Step 3 (Termination Check fog))
@) If Ve(y*H)T((y*)" — ybt) > 0, then noj exists, STOP.
(b) Else, ifc((y*)?) < c(yb*!) then setj = (y*)* and STOP.
(c) Otherwise, selecta;,; € (v;,0), withv;,; —v; > §, seti =i+ 1 and
go to Step 1.

It is important to note that in Step 2, {fy*)* does not relate to a path, we
simply increase the value of and repeat. Thus, without loss of generality we can
assume that all solutions to (11) correspond to a path. After possibly readjusting
for small enough (integral) values forandr (for example seconds and pennies,
respectively), the teric(y"*")T ((y*)*—y"*!) can only take on certain prescribed
values. This is because, the term

Vc(ybest) — Ul(tTybeSt)t 4T

has a fixed nonnegative value and the tégm)® — y* is the difference of two
path vectors. Thus, we know for example that if we denote V¢(yb?), that

. Zwi < Vc(ybest)T((y*)i . ybest) < Zwi

so that a possible range forcould be(—). w;, 0). The lowest amount to ad-
vancer by would be0.01 if the units oft, 7, andv were properly adjusted.

Lemma 5 In a finite number of iterations (specifical[@%), Algorithm 2 will
either find a less costly path thafi®s! or determine that no such path exists.

Proof. Suppose not. Then there is an infinite sequence; ®alues generated
from Step 3c. However, since

v € (Vc(ybest)T((y*) . ybeSt), 0)
andv;, — v; > 0, the maximum number of iterations is

tOlv — 1

J

and thus we have the desired result. QED

< 00,

12

5 Numerical Results

The Algorithm 1 presented above has been applied to two reasonably-sized net-
works under a variety of choices for the value functidr), starting points, and

(O,D) pairs. The results are very encouraging in that the method converged to a
solution in all cases in only 2 or 3 iterations. That is to say, a shortest path to
problem (1) was computed by solving only 2 or 3 associated linear programming
subproblems. In fact, in each case, the method always produced a vertex solution
as the next iterate and the heuristic scheme as described above to ensure this was
not needed.

At this time the exact reasons why this was the case are not well-known and
further research in this area is needed. Indeed, we can construct a simple counter-
example to show that maintaining each iterate as a vertex does not necessarily
always happen. Consider the following simple counter-example.

Counter-Example

We consider the network shown in Figure 2 with three nodes and three arcs given
as{(1,2),(1,3),(2,3)} with the corresponding node-arc incidence matrix given
as follows:

1 1 0
A= -1 0 1
0 -1 -1

Taking the origin as node 1 and the destination as node 3 we see that there are just
two possible pathsi — 2 — 3 (path 1), orl — 3 (path 2). Suppose that the
times on each of the three arcs drand the tolls are respectivelff), 23, 0) for
arcs{(1,2), (1,3), (2,3)}. Using a value function of(«) = 10a?, the two paths
have the following nonadditive costs:

path 1 value =40

path 2 value =33

But now consider the feasible arc flows flow vector (0.25,0.75,0.25). The ob-

jective value associated with this vectoBis875, confirming that a non-vertex so-
lution is optimal. Consequently, if the proposed algorithm is tried on this counter-
example network with the data as given, the heuristic scheme to maintain a vertex
solution would need to be employed. Since the heuristic scheme did not ever need
to be invoked in our tests, one might conclude that in practice, things are perhaps
somewhat better than anticipated.

13

Figure 2: The Network for the Counter-Example

Description of the Test Data
The Networks

We have tested the proposed algorithm on two reasonably-sized networks. The
first network, shown in Figure 3 is composed of 321 nodes and 1128 arcs rep-
resenting the road network for Jersey. Since the maximum number of arcs for a
network withn nodes isn(n — 1), we see that this New Jersey network is rela-
tively sparse since it has only1% of the maximum number of links. We have
used node 152 as the origin and node 291 as the destination in our tests of this
network.

The second network tested consist§@hodes an@, 540 links. Since3, 540 =
6059 we see that this network represents the other extreme, naneély@adense
network. The times and tolls were generated randomly for this network.

The Value Functions, the Starting Points, and the (O,D) Pairs

To provide a somewhat representative sample of value functions (that convert
travel times to dollars), we have included the following three choices:

1. v(a) = 10a?,

2. v(a) = and

at
100"

3. v(a) = ¢ 1000

14

Itis easy to check that all three choices are convex and continuously differentiable
so that the optimality conditions of Lemma 4 are valid. The first two choices
represent increasing functions in travel times whereas the third is decreasing.

Since an optimal arc flows vector must have each component equal to zero =
or one, we have used the following choices for starting paifits

1. z? =1, for alli,

2. z) =1, for all i that are multiples of 23V = 0 otherwise,

)

3. 20 = 1, for all i that are multiples of 43 = 0 otherwise,

% %

4. 1) = 1, for all i that are multiples of 63 = 0 otherwise,

)

5. 29 = 1, for all i that are multiples of 8;? = 0 otherwise.

)

Lastly, we have used the following choice of O-D pairs for each network:

The results of our tests appear below. Note that ’Iter’ is the number of sub-
problem iterations needed (i.e., the number of linear programs solved).

Here is the optimal path with associated values:

Table 1: Optimal Path for the New Jersey Netwarky) = 10a?=

Arc From To ArcTime Arc Toll

529 152 151 0.08975 0.00000
525 151 154 0.06719 0.00000
538 154 168 0.07071 0.00000
590 168 166 0.08883 0.00000
583 166 254 0.05340 0.00000
915 254 159 0.03802 0.00000
557 159 256 0.07106 0.30000
926 256 259 0.20839 0.40000
934 259 260 0.05701 0.30000
939 260 290 0.07159 0.30000
1044 290 289 0.03606 0.25000
1038 289 291 0.04924 0.30000

Table 2: Results for the New Jersey Netwarky) = 10a?

15

O Iter c(2%) c(z*)

2 232,384.24 9.97
57,612.29 9.97
13,510.00 9.97

7,502.60 9.97
3,538.74 9.97

g b wWwN PS8

Table 3: Optimal Path for the New Jersey Netwarky) = %

Arc From To ArcTime Arc Toll

527 152 148 0.10035 0.00000
513 148 146 0.22883 0.00000
505 146 145 0.10000 0.00000
504 145 172 0.06988 0.00000
605 172 173 0.10753 0.00000
610 173 247 0.24447 0.00000
892 247 262 0.17180 0.00000
946 262 263 0.05893 0.00000
950 263 264 0.06719 0.00000
954 264 284 0.07169 0.00000
1019 284 285 0.06067 0.00000
1022 285 286 0.08498 0.00000
1026 286 288 0.06719 0.00000
1035 288 291 0.04123 0.30000

Table 4: Results for the New Jersey Netwarky) = <

O Iter c¢(aV) c(z*)

5,379,912.78 0.35
329,617.97 0.35
18,068.52 0.35
5,574.42 0.35
1,254.13 0.35

G WDNPRR
Wwwww

16

Table 5: Optimal Path for the New Jersey Netwarfy) = et

Arc From To ArcTime Arc Toll

527 152 148 0.10035 0.00000
513 148 146 0.22883 0.00000
505 146 145 0.10000 0.00000
504 145 172 0.06988 0.00000
605 172 173 0.10753 0.00000
610 173 247 0.24447 0.00000
892 247 262 0.17180 0.00000
946 262 263 0.05893 0.00000
950 263 264 0.06719 0.00000
954 264 284 0.07169 0.00000
1019 284 285 0.06067 0.00000
1022 285 286 0.08498 0.00000
1026 286 288 0.06719 0.00000
1035 288 291 0.04123 0.30000

Table 6: Results for the New Jersey Netwarky) = e1o0s

20 Iter c(2%) c(z¥)
1 2 448.36 1.30
2 2 219.93 1.30
3 2 109.46 1.30
4 2 112.27 1.30
5 2 7.33 1.30

Acknowledgments

We would like to thank Professor Hernan Abeledo of George Washington Uni-
versity and Professor Jong-Shi Pang of The Johns Hopkins University for useful
discussions concerning this paper.

17

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. OrlinVetwork Flows Theory, Al-
gorithms, and Applications$rentice-Hall, New Jersey (1993).

[2] M. S. Bazaraa and C. M. Shetti¥onlinear Programming Theory and Al-
gorithms John Wiley & Sons, New York, (1979).

[3] D. Bernstein and S. A. Gabriel, “Solving the Nonadditive Traffic Equi-
librium Problem” Lecture Notes in Economics and Mathematical Systems
Network Optimization Conferencé®. M. Pardalos, D. W. Hearn, W. W.
Hager, eds., (1997), 72-102.

[4] D.Bernstein and K. Scott, “Solving the Minimum Cost Path Problem When
the Value of Time Function is Nonlinear,” Princeton University (1997),
Working Paper. .

[5] V. Chvatal,Linear ProgrammingWV. H. Freeman and Company, New York,
(1980).

[6] R.B. Dial, “A Model and Algorithm for Multicriteria Route-Mode Choice,”
Transportation ResearcBol. 13B, (1979) 311-316.

[7] M. Frank and P. Wolfe, “An Algorithm for Quadratic Programminglaval
Research Logistics Quarteriol. 3, (1956), 95-110.

[8] S. A. Gabriel and D. Bernstein, “The Traffic Equilibriuim Problem with
Nonadditive Costsransportation Sciencé/ol. 31, No. 4, (1997),337—-
348.

[9] R.S. Garfinkel and G.L. Nemhauseinteger Programming Wiley-
Intersciences, (1972).

[10] A. Geoffrion, “Lagrangian Relaxation for Integer Programminbfathe-
matical Programming Studi/l. 2, (1974), 82-114.

[11] M. Marathe and R. Jacob, Los Alamos National Laboratory, Personal Com-
munication.

[12] P. B. Mirchandani and M. M. Wiecek, “Routing with Nonlinear Multiat-
tribute Cost Functions,Applied Mathematics and Computatiowol. 54,
(1993), 215-239.

18

[13] R. T. RockafellarNetwork Flows and Monotropic Optimizatipdaohn Wi-
ley & Sons, (1984).

[14] A.R. Warburton, “Approximation of Pareto Optima in Multiple-Objective
Shortest-Path Problem3Jperations Researckol. 35, (1987), 70-79.

[15] J. G. Wardrop, “Some Theoretical Aspects of Road Traffic Resedrcbg.
Inst. Civil Engineersart 11 1 (1952) 325-378.

[16] G.Y. Handler and I. Zang, Handler, G.Y, and |. Zang. “A Dual Algorithm
for the Constrained Shortest Path Problemigtworks Vol. 10, (1980),
293-310.

19

WOifgl Wb Huys Py
sDestination. —Divided Hys - Toll Hyys

Figure 3: The New Jersey Highway Network

20

